Chapter 12
The Cost of Capital

Topics
- Thinking through Frankenstein Co.’s cost of capital
- Weighted Average Cost of Capital: WACC
- Measuring Capital Structure
- Required Rates of Return for individual types of capital.
- (Real Company) WACC
- Flotation Costs

Cost of Capital

Cost of Capital - The return the firm’s investors could expect to earn if they invested in securities with comparable degrees of risk.

Capital Structure - The firm’s mix of long term financing and equity financing.
Frankenstein Co.’s Cost of Capital

- Dr. Frederick Frankenstein is considering expanding his company’s business and has asked his assistant Igor to estimate the company’s cost of capital.
- The company has 1 million shares of common stock outstanding at a market price of $8 per share. According to Frau Bluker, another Dr. Frankenstein assistant, stockholders demand a 22% return on the company’s stock.
- Igor’s initially estimates that Frankenstein’s cost of capital is the stockholders 22% required return under the assumptions.
 - company’s value = value of its stock
 - risk of company = risk of its stock
 - investors’ required return from company = investors’ required return on stock. However,…

What about debt?

- Upon further investigation, Igor discovers that Frankenstein Co. has bonds with a market value of $2 million outstanding and the company’s bondholders require a 12% return on this debt.
- Now Igor is thinking the following:
 - Value of company = value of portfolio of all the firm’s debt & equity securities
 - Risk of company = risk of portfolio
 - Rate of return on company = rate of return on portfolio
 - Investors’ required return on company (company cost of capital) = investors’ required return on portfolio

Frankenstein Co.’s Capital Structure

- Market Value of Debt $2 million
- Market Value of Equity $8 million
- Market Value of Assets $10 million
- The company uses 20% debt financing and 80% equity financing, and Igor assumes the company will maintain this capital structure.
- Igor decides the cost of debt is the bondholders’ required return of 12% and the cost of equity is the stockholders’ required return of 22%.
- Igor decides that Frankenstein’s cost of capital is equal to the return of an investor owning a portfolio of all the company’s debt and equity, which is .2(12%) + .8(22%) = 20%.
What about taxes from Frankenstein’s perspective?

- Igor’s logic is close but not quite right because he is forgetting that interest paid on debt is tax deductible for a corporation.
- Consider these two companies with a 35% tax rate: Abby has no debt, Normal has $1000 in debt with a 10% interest rate.

<table>
<thead>
<tr>
<th>Company</th>
<th>Abby</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIT</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Interest Exp.</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Pre-tax income</td>
<td>1000</td>
<td>900</td>
</tr>
<tr>
<td>Taxes (35%)</td>
<td>350</td>
<td>315</td>
</tr>
<tr>
<td>Net Income</td>
<td>650</td>
<td>585</td>
</tr>
</tbody>
</table>

- Normal’s interest expense saves 35 in taxes and has an after-tax cost of 65, which makes their after-tax interest rate 65/1000 or 6.5% = 10%(1-.35). Igor needs to incorporate this into his estimate.

Igor’s final Cost of Capital estimate

- Frankenstein has a tax rate of 35%, uses 20% debt financing with a cost of 12% (before-tax) and 80% equity financing.
- Frankenstein Co.’s weighted average cost of capital:

\[
WACC = 0.2(12\%)(1-.35) + 0.8(22\%) = 0.1916
\]

- If the company’s expansion is expected to earn more than 19.16%, the company should proceed with this investment.

Does Frankenstein’s 19.16% WACC work?

- Say Frankenstein’s expansion would cost $1,000,000 today and would increase the company’s cash flow by $200,000 per year into perpetuity.
- NPV = $200,000/0.1916 - $1,000,000 = $43,841. IRR = 200,000/1,000,000 = 20%
- 20% or $200,000 of this cost would be raised through debt with an after-tax cost of 12%(1-.35) = 7.8%, which is $15,600 (7.8% of $200,000) per year needed for the company’s creditors.
- 80% or $800,000 of this cost would be raised through equity with a return of 22%, which is $176,000 per year expected by the company’s stockholders.
- This means Frankenstein’s investors need $15,600 + $176,000 = $191,600 per year on their investment (19.16%).
- Since the expansion’s annual cash flow exceeds its financing requirements, it adds value to the company and should be accepted.
WACC

Weighted Average Cost of Capital (WACC). The expected rate of return on a portfolio of all the firm’s securities.

Company cost of capital = Weighted average of debt and equity returns.

\[
WACC = \frac{\text{total income}}{\text{value of investments}}
\]

\[
r_{\text{assets}} = \frac{(D \times r_{\text{debt}}) + (E \times r_{\text{equity}})}{V}
\]

\[
r_{\text{assets}} = \left(\frac{D}{V} \times r_{\text{debt}} \right) + \left(\frac{E}{V} \times r_{\text{equity}} \right)
\]

WACC

- Taxes are an important consideration in the company cost of capital because interest payments are deducted from income before tax is calculated.

\[
\text{After-tax cost of debt} = \text{pretax cost} \times (1 - \text{tax rate})
\]

\[
= r_{\text{debt}} \times (1 - T_c)
\]
WACC

Weighted-average cost of capital =

\[
WACC = \left(\frac{D}{V} \times (1 - T_c) \right) r_{debt} + \left(\frac{E}{V} \times r_{equity} \right)
\]

Three Steps to Calculating Cost of Capital

1. Calculate the value of each security as a proportion of the firm’s market value.
2. Determine the required rate of return on each security.
3. Calculate a weighted average of these required returns.

Measuring Capital Structure

- In estimating WACC, do not use the Book Value of securities.
- In estimating WACC, use the Market Value of the securities.
- Book Values often do not represent the true market value of a firm’s securities.
Measuring Capital Structure

Market Value of Bonds - PV of all coupons and par value discounted at the current interest rate.

Market Value of Equity - Market price per share multiplied by the number of outstanding shares.

Pittsburgh Perfect Pumpkin Pie’s (4P for short) Capital Structure and WACC

- 4P has bonds with at total par value of $10 million, 10 years to maturity, and a 10% annual coupon. Also, 4P has 5 million shares of common stock with a par value of $1 per share and $5 million of retained earnings.

<table>
<thead>
<tr>
<th>Balance Sheet (book value) in $million</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term Bonds</td>
<td>10</td>
</tr>
<tr>
<td>Common Stock</td>
<td>5</td>
</tr>
<tr>
<td>Retained Earnings</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>
Pittsburgh Perfect Pumpkin Pie’s (4P for short) Capital Structure and WACC

- 4P’s bonds have a YTM (required return) of 8%. The common stock sells for $5 per share with an expected return of 15%. What is the market value of these securities and 4P’s WACC if their tax rate is 40%?
- Market Value of Bonds: 10 years to maturity = N, par value = 10 = PV, coupon rate = 10% of 10 = annual coupon of 1 = PMT, 8% = I/Y, CPT PV = $11.34M.
- Market Value of Equity: 5 million shares x $5/share = $25M.

<table>
<thead>
<tr>
<th>4P’s Market Value($mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt</td>
</tr>
<tr>
<td>11.34</td>
</tr>
<tr>
<td>31.2%</td>
</tr>
<tr>
<td>Equity</td>
</tr>
<tr>
<td>25.00</td>
</tr>
<tr>
<td>68.8%</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>36.34</td>
</tr>
<tr>
<td>100%</td>
</tr>
</tbody>
</table>

WACC = .312(8%)(1-0.4) + .688(15%) = 11.8%

If book value weights (50/50) were used, WACC would have been understated!

Required Rates of Return

- **Bonds**
 \[r_d = \text{YTM} \]

- **Common Stock**
 \[r_e = \text{CAPM} \]
 \[= r_f + B(r_m - r_f) \]

Issues in Implementing CAPM:

- Must obtain estimates of \(r_f, B, \) and \(r_m - r_f \) or market risk premium.
- Can use Treasuries to estimate \(r_f \). But what time to maturity?
 - For financial investments like stocks, 3-month T-bills are usually used. (Current rate ~ 1%)
 - Since capital budgeting involves long-term investments, some argue 10 or 20 year T-bond rates make sense. (Current 10-yr T-bond rate ~ 4%)
- Many published sources of B estimates.
 - Value Line Investment Survey, Standard & Poor’s, Yahoo Finance and Merrill Lynch.
- For \(r_m - r_f \) can use historical difference between market return and T-bills (8 to 9%) or market return and long-term T-bonds (7 to 8%).
Required Rates of Return

Dividend Discount Model Cost of Equity

Perpetuity Growth Model =

\[P_0 = \frac{\text{Div}_1}{r_e - g} \]

solve for \(r_e \)

\[r_e = \frac{\text{Div}_1}{P_0} + g \]

The Dividend Discount Model

- The expected return formula derived from the constant growth stock valuation model.
- \(r_{\text{equity}} = \frac{\text{Div}_0}{P_0} + g = \frac{\text{Div}_0(1+g)}{P_0} + g \)
- In practice: The tough part is estimating \(g \).
- Security analysts’ projections of \(g \) can be used.
- According to the journal, Financial Management, these projections are a good source for growth rate estimates.
- Possible Sources for \(g \): Value Line Investment Survey and Institutional Brokers’ Estimate System (I/B/E/S)

Expected Return on Preferred Stock

Price of Preferred Stock =

\[P_0 = \frac{\text{Div}}{r_{\text{preferred}}} \]

solve for \(r_{\text{preferred}} \)

\[r_{\text{preferred}} = \frac{\text{Div}}{P_0} \]
Proctor & Gamble: Let’s try finding WACC for real.

- We will work this out together. Here’s some information we need to gather and use.
 - Gives us preferred stock, capital structure information, beta, growth rate estimates and quarterly dividend information
- Corporate Bond info:
 - Bond rating: www.moodys.com
 - Treasury yield and yield spreads: www.bondsonline.com

Recall what we need to do for P&G.

Three Steps to Calculating Cost of Capital
1. Calculate the value of each security as a proportion of the firm’s market value.
2. Determine the required rate of return on each security.
3. Calculate a weighted average of these required returns.

To use WACC, or not to use WACC

- A company’s WACC is for average risk projects for a firm.
- Most financial managers adjust WACC upward for riskier than average projects and downward for safer than average projects.
- Also, companies with diverse divisions might use industry average WACCs for other companies in the same line of business as their individual corporate divisions.
What to keep in mind about WACC.

- WACC is the correct discount rate for a company to use for average-risk capital investment projects.
- WACC is the return the company needs to earn after tax in order to satisfy all its security holders.
- Since the after-tax cost of debt is usually the cheapest source of financing for a firm, a firm may be tempted to increase their debt ratio. However, this will increase the risk associated with both debt & equity financing and a higher required rate of return on both sources of financing.
 - More on this issue in Chapter 15, Debt Policy.

Flotation Costs

- The cost of implementing any financing decision must be incorporated into the cash flows of the project being evaluated.
- Only the incremental costs of financing should be included.
- This is sometimes called Adjusted Present Value.