Confounded coefficients: Accurately comparing logit and probit coefficients across groups

Glenn Hoetker
College of Business Administration
University of Illinois at Urbana-Champaign
350 Wohlers Hall
1206 S. Sixth Street
Champaign, IL 61820
Tel: 217-355-4891
Fax: 217-244-7969
E-mail: ghoetker@uiuc.edu

ABSTRACT

The logit and probit models are critical parts of the management researcher’s analytical arsenal. We often want to know if a covariate has the same effect for different groups, e.g., foreign and domestic firms. Unfortunately, many attempts to compare the effect of covariates across groups make the unwarranted assumption that each group has the same residual variation. If this is not the case, comparisons of coefficients can reveal differences where none exist and conceal differences that do exist. This article explains the statistical and substantive implications of this assumption, introduces approaches to comparing coefficients that avoid making it, and uses simulations to explore the practical significance of the assumption and the power of approaches introduced to avoid it. As a practical example, I show that an apparent dramatic new insight into the technology strategy of Japanese computer manufacturers is actually just a manifestation of this problem. I close with implications for the practice of research.

Keywords: Logit, probit, discrete choice
INTRODUCTION

The logit and probit models have become critical parts of the management researcher’s analytical arsenal. In strategy, marketing, and organizational economics, they are the primary tool for analyzing the make-or-buy decision (Anderson and Schmittlein 1984; Masten 1984; Shelanski and Klein 1995). International business researchers use them to analyze firms’ choice of entry mode into a foreign country (Barkema and Vermeulen 1998; Chen and Hennart 2002). Researchers have also applied them to study consumer purchasing behavior given the presence of a store brand (Chintagunta, Bonfrer, and Song 2002), the likelihood of a person remaining in the teaching profession (Stinebrickner 2001), and incumbent firms’ decision to enter an emerging industrial subfield or not (Mitchell 1989).

Often it is of interest to know if a covariate has the same effect for different groups. For example, Kim, Han and Srivastava (2002) asked whether Windows and Macintosh users gave equal consideration to network externalities in their decision to upgrade their hardware. Long, Allison, and McGinnis (1992) studied whether the number of articles published affected the likelihood of promotion for male and female faculty equally.

Unfortunately, attempts to compare the effect of logit or probit coefficients across groups require an assumption that is often false. Logit and probit coefficients are scaled by the unknown variance of their residual variation. Naïvely comparing coefficients as one would in linear models assumes that residual variation is the same across groups, though in many cases it may not be. Differences in coefficients across groups may merely reflect the difference in residual variation across groups, rather than real differences in the impact of covariates across groups.

Recently, Allison (1999a) drew attention to the pitfalls of assuming equal residual variation across groups in the sociological literature, but most management research does not reflect awareness of the issue. Yet the consequences of violating this assumption are severe. As Allison expresses it, “Differences in the estimated coefficients tell us nothing about the differences in the underlying impact of x on the two groups” (1999a:190). Worse yet, they may appear informative.
They can reveal differences where none exist, conceal differences that do exist, and even indicate differences in the reverse direction of the actual situation.

This paper has four goals. First, it seeks to make researchers aware of the dangers of comparing coefficients across groups while naively assuming their residual variation is the same. Second, it equips researchers with a set of analytical techniques that avoid this assumption. Third, it uses simulations to explore the practical significance of the ignoring the assumption of equal residual variation and the power of alternative analytical techniques. To my knowledge, this is the first time this has been done. Lastly, it brings together the first three points to suggest implications for the practice of research.

The article proceeds as follows. After briefly reviewing the logit and probit models, I explain the statistical implications of comparing coefficients across groups without accounting for possible differences in the groups’ residual variation. I then use a simulated dataset to demonstrate the substantive implications of doing so: even small differences in the groups’ residual variation can lead to extremely misleading results. Next, I introduce several approaches for comparing coefficients that avoid the assumption of equal residual variation and explore their power with simulated data. I demonstrate the importance and practical application of these methods using actual data on the technology procurement strategies of U.S. and Japanese notebook computer manufacturers. The paper concludes with a discussion of implications for the practice of research using logit and probit.

IMPLICATIONS OF ASSUMING EQUAL RESIDUAL VARIATION ACROSS GROUPS

Statistical implication of the assumption

Since standard econometric texts (e.g., Greene 2000) and more specialized works (Allison 1999b; Long 1997; Maddala 1983; Train 1986) cover the logit and probit models, this section will review the logit model only briefly, focusing on the elements relevant to this paper.

Suppose we are modeling which of two alternatives occurs, e.g., whether a firm makes or buys a component. Without loss of generality, we assign a value of 0 to the dependent variable y_i for cases in which one alternative occurs and set y_i equal to 1 for cases in which the other
alternative occurs. We assume that \(y \) equals 1 only if an unobserved, continuous variable \(y^* \) is greater than an unobserved threshold, \(\tau \). That is,

\[
y_i = \begin{cases}
1 & \text{if } y_i^* > \tau \\
0 & \text{if } y_i^* \leq \tau
\end{cases}
\]

Further, we assume that \(y^* \) is linearly related to the observed independent variables:

\[
y_i^* = x_i \alpha + \varepsilon_i
\]

where \(x_i \) is a vector of observed covariates and \(\varepsilon_i \) is a random disturbance independent of the observed covariates. As in the linear model, the disturbance reflects the impact of differences across cases in variables the researcher does not observe—residual variation.

Since \(y^* \) is a latent variable, we cannot estimate its variance, mean, or the threshold, \(\tau \). In the logit model, we assume \(\varepsilon \) has a logistic distribution and variance 1. In the probit case, we assume \(\varepsilon \) is normally distributed with a variance of \(\pi^2/3 \). Again, these arbitrary values are assigned because they simplify calculations, however they cannot be confirmed by the data. \(\tau \) and \(\mathbb{E}(\varepsilon|x) \) are typically assumed to be 0 as an identifying assumption.

These assumptions lead to the familiar logit model

\[
\log \left(\frac{p_i}{1 - p_i} \right) = x_i \beta
\]

The \(\beta \) coefficients we obtain from estimating equation (3) are related to the \(\alpha \) coefficients in equation (2) as follows.

\[
\beta = \frac{\alpha}{\sigma}
\]

where \(\sigma \) is the standard deviation of the residual variation, \(\varepsilon \). This relationship is the heart of the problem in comparing coefficients across groups. Since the true value of \(\sigma \) is unidentifiable, we cannot recover \(\alpha \), the *true* effect of a covariate. When we arbitrarily set \(\sigma \) equal to 1, we also arbitrarily set the scale of \(\beta \). Accordingly, if \(\sigma \) varies between groups, the logit coefficient \(\beta \) will also vary, *even if the true effect of the covariate, \(\alpha \), is the same between groups.*
Substantive implications of the assumption

In many contexts, it is reasonable to assume that residual variation differs across groups. For example, institutional pressures may lead Japanese firms to be more similar in their strategy than U.S. firms (Lincoln 2001). In labor mobility studies, there is evidence that women have more heterogeneous career paths than men (Long and Fox 1995).

There is a heavy burden of proof on any author claiming that residual variation is the same across groups, because the failure of this assumption can have serious consequences. To demonstrate these consequences, consider the following hypothetical model, which uses a simulated dataset. We wish to model the dichotomous variable y as a result of two independent variables, x_1 and x_2. We are particularly interested in knowing whether the effect of x_2 on the likelihood of $y=1$ differs across two groups, which I unimaginatively label “Group 0” and “Group 1”. I generated the data according to equation (5).

\[
\begin{align*}
 y^* & = x_{1i} + 2x_{2i} + \epsilon_i \\
 y_i & = \begin{cases}
 1 & \text{if } y^*_i > 0 \\
 0 & \text{if } y^*_i \leq 0
\end{cases} \\
 x_1, x_2 & \sim N(\mu=0, \sigma=4) \\
 \epsilon_{\text{group } 0} & \sim N(\mu=0, \sigma=2) \\
 \epsilon_{\text{group } 1} & \sim N(\mu=0, \sigma=4)
\end{align*}
\]

(5)

Note that the actual impacts of x_1 and x_2 are the same for both groups. Only the residual variation differs across groups. For simplicity, I assume the two groups are the same size and that group membership is exogenous, e.g., gender or firm’s home country.

There are two common approaches to comparing coefficients across groups: comparing the coefficients that result from estimating separate models for each group or estimating a single model that interacts a variable for group membership with variables of interest. Table 1 reports the results of the first approach. I estimated the following equation twice, once for each group.

\[
\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2
\]

(6)

Naively comparing the results, we see an apparent difference in the impact of x_2. It appears to have almost twice as strong an effect (1.835/.922) for Group 0 as for Group 1. In a linear model,
we would use the Wald chi-squared statistic to determine if the difference in the estimated coefficients is statistically significant. Assuming the coefficients for each group have independent sampling distributions, the statistic is

\[
\frac{(\beta_2^{G1} - \beta_2^{G0})^2}{\text{std. err.}(\beta_2^{G1})^2 + \text{std. err.}(\beta_2^{G2})^2},
\]

which has one degree of freedom. Applying it to the coefficients for \(x_2\) yields a statistic of 31.12, which is highly significant (p<.001). We would thus conclude that the effect of \(x_2\) differs across groups. This conclusion is, of course, false, since by construction the only difference between the two groups is the standard deviation of their residual variation. Unfortunately, in a real world application, we would not know the residual variation in each group and could not tell if differences in coefficients indicate differences in actual effect.

Table 2 extends this simulation to show how severe the problem can become with even small differences in the residual variation. I again generated data using Equation (5), but let the standard deviation of Group 1’s residual variation range from 1 to 2 in increments of 0.2. I generated 20 datasets of 1000 observations each for the five different standard deviations. The table shows the results of estimating Equation (6) on each dataset. The first column shows that the estimated value of \(\beta_2\) decreases quickly as the standard deviation increases, even though the true value of the coefficient, \(\alpha_2\), is exactly the same in each dataset. The next column uses Equation (7) to test for the equality of \(\beta_2\) between Group1 and Group 0 (for which the standard deviation was held at 1.0). When Group 1’s standard deviation was 1.2, the coefficients were incorrectly found to differ at the five percent level of significance in 6 out of 20 cases. Larger differences in the residual variation led to more false results, as one would expect. For example, when the standard deviation of Group 1’s residual variation was 1.6, the coefficients were found to differ in 17 out of 20 cases. This clearly illustrates the hazards of comparing coefficients across groups if their residual variation might differ.

The second approach to comparing the effect of a covariate across groups is to estimate a single regression for all observations (Aiken and West 1991; Pindyck and Rubinfeld 1991). A
dummy variable is set to one for one type of observation, e.g., Group 1, and interacted with the relevant covariates. Considering a linear model with only one variable, \(x \), and letting the dummy variable, \(G \), be set to 1 for Group 1 firms, the equation would be of the form

\[
y = \beta_0 + \beta_1 x_i + \beta_2 (G_i x_i) + \varepsilon_i
\]

(8)

An estimate of \(\beta_2 \) significantly different from 0 indicates that the impact of \(x \) varies between Group 0 and Group 1. The sign of \(\beta_2 \) indicates whether the impact of \(x \) is diminished or increased for Group 1.

As indicated by the presence of a single error term, \(\varepsilon_i \), this approach assumes that the residual variation for Group 0 and Group 1 is the same (Darnell 1994:111; Pindyck and Rubinfeld 1991:107). We can test this assumption in the linear model (Quandt 1960), but as discussed above, we cannot test it in a logit model, because the standard deviation of the residual variation cannot be identified and has been arbitrarily set to 1 (Long 1997:47; Maddala 1983:23). Therefore, the single equation approach is inappropriate unless there are strong theoretical reasons to believe that the residual variation is the same in both groups.

A variation of the above simulation demonstrates how misleading this sort of comparison can be. I generated 20 simulated datasets of 1000 observations each, 500 each from Group 0 and Group 1, according to the following equation.

\[
y^*_i = x_{i1} + 2x_{i2} + .5(G_i x_{i2}) + \varepsilon_i
\]

\[
y_i = \begin{cases} 1 & \text{if } y^*_i > 0 \\ 0 & \text{if } y^*_i \leq 0 \end{cases}
\]

\[
G_i = \begin{cases} 0 & \text{for group 0} \\ 1 & \text{for group 1} \end{cases}
\]

\[
x_{i1}, x_{i2} \sim N(\mu=0, \sigma=4)
\]

\[
\varepsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1)
\]

\[
\varepsilon_{\text{group 1}} \sim N(\mu=0, \sigma=3)
\]

(9)

I then estimated the equation

\[
\log \left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (G_i x_2)
\]

(10)
on each dataset. A significant coefficient for β_3 would indicate that x_2’s impact on the dependent variable differs across groups. Even though x_2’s effect is 25% greater for Group 1 by design, estimating Equation (10) fails to find this difference. Figure 1 shows the point estimate and 95% confidence intervals for β_3 in each of the 20 simulated datasets. The 95% confidence interval included the true value of the coefficient, 0.5, in only four datasets: 4, 7, 8 and 13. Of those, the estimated coefficient was significant in only one dataset, number 4. Disturbingly, the only other statistically significant estimate, dataset 9, is a highly erroneous -0.42, indicating a diminished impact of x_2, rather than the true increased impact.

This unfortunate outcome is not surprising. The likely outcome of using an interaction term in a single equation despite differences in variance between the groups is that the slope coefficients will be found not to differ, even if they actually do (Gujarati 1988: 527). However, dataset 9 shows that it is also possible to find an effect contrary to reality. Clearly, the single equation with interaction term strategy is no better than estimating each group separately.

In fact, it is even less informative. In the single equation model, it is impossible to determine if the coefficient has a significant effect within a group. In contrast, the separate equations reported in Table 1 show that β_2 was statistically significant for both Group 0 and Group 1.

To summarize, we cannot compare coefficients across groups in a logit or probit model as we would in a linear regression. Doing so, either by regressing each group separately and comparing coefficients or by using an interaction term in a single equation, can lead to erroneous conclusions. Insignificant differences can appear significant and significant differences can appear insignificant. Clearly, we need a way to identify a difference in residual variation across groups and to carry out accurate comparisons even in its presence.

IDENTIFYING AND ADJUSTING FOR UNEQUAL RESIDUAL VARIATION

Allison’s method

Allison (1999a) developed a set of related tests to determine if (a) the residual variation of two groups differs significantly, (b) if there is evidence that the true effect of at least one covariate differs significantly across groups, and (c) if the true effect of a specific covariate
differs across groups. I will only briefly sketch the underpinnings to this method, focusing on demonstrating its power and relative ease of application. This section introduces Allison’s method and uses simulations to test its power. The next section uses a practical example to demonstrate its application in detail.

At the heart of the approach is rewriting the underlying model as a single equation that allows the residual variation to vary across groups. Under the assumption that all coefficients are equal across the groups, we can write the model as

\[y_i^* = \beta_0 + \beta_1 G_i + \sum_{j=1} \beta_j x_{ij} + \sigma e_i \]

\[G_i = \begin{cases} 0 & \text{for group 0} \\ 1 & \text{for group 1} \end{cases} \]

\[\sigma_i = \frac{1}{1+\delta G_i}, \quad \delta > -1 \]

(11)

Arbitrarily setting \(\sigma \) equal to 1 for group 0, \(\delta > 0 \) implies that the residual variation is smaller for Group 1 than Group 0. If \(\delta < 0 \), the residual variation is larger for Group 1 than Group 0. The standard deviation of the residual variations differs by 100\(\delta \) percent.

Combining this with Equation (3) leads to

\[\log \left(\frac{p_i}{1-p_i} \right) = \left(\beta_0 + \beta_1 G_i + \sum_{j=1} \beta_j x_{ij} \right) (1 + \delta G_i), \]

(12)

which can be estimated using code supplied by Allison.iv

The first test proceeds under the null hypothesis that the true values of the coefficients are the same across groups, but that the residual variation differs. That is, it tests that the \(\alpha \) terms are the same, but that \(\sigma \) varies across groups. The test proceeds by estimating equation (12) and examining \(\hat{\delta} \). We can determine if \(\hat{\delta} \) is significantly different from zero by a Wald chi-square test (the squared ratio of the estimate to its standard error). Alternatively, we can construct a log-likelihood ratio test by taking twice the positive difference between the log-likelihood for this model and the log-likelihood for an ordinary logit equation (equivalent to assuming \(\delta = 1 \)). If \(\hat{\delta} \) is not significant, the test provides no evidence that the residual variation differs between groups. In this case, Allison suggests continuing with conventional methods for comparing coefficients.
If, on the other hand, is significantly different from zero, it is evidence that the residual variation differs across groups. The residual variation differs by 100% between groups, with a positive value indicating that Group 1’s residual variation is greater than Group 0’s.

If we find unequal residual variation, the next step is to test the null hypotheses that the true coefficients (the α terms) are the same across groups versus the alternative hypotheses that at least one of them varies. Since the model estimated immediate above constrains the α terms to be equal across groups, we need to compare it to an unconstrained model that allows the α coefficients to vary across groups. We do so with a likelihood ratio test. We can obtain the log-likelihood for the unconstrained model either by estimating an ordinary logit model that interacts every covariate with the group membership dummy, G, or by adding together the log-likelihoods obtained by estimating a separate logit model for each group.

I return to the earlier simulation to explore the power of this method. To improve on conventional practice, it should meet three criteria. First, it should reveal when residual variation differs significantly between groups. Second, it should detect when apparent differences in coefficients across groups are merely the impact of differences in residual variation. Third, it should allow us to detect true differences of coefficients across groups.

I first test the method’s performance when the underlying coefficients, the α’s in Equation (3), are the same and only the residual variation varies across groups. I generated datasets of 1000 observations (500 of Group 0, 500 of Group 1) according the following equation:

\[
y^* = x_{1i} + 2x_{2i} + \epsilon_i
\]

\[
y_i = \begin{cases}
1 & \text{if } y_i^* > 0 \\
0 & \text{if } y_i^* \leq 0
\end{cases}
\]

\[x_1, x_2 \sim N(\mu=0, \sigma=4)\]

\[\epsilon_{\text{group }0} \sim N(\mu=0, \sigma=1)\]

\[\epsilon_{\text{group }1} \sim N(\mu=0, \sigma=1, 1.2, 1.4, 1.6, 1.8)\]

I varied the standard deviation of Group 1’s residual variation from 1 to 1.8. At each level, I generated 20 datasets.
I then tested for differences in residual variation by estimating equation (12) on each dataset. The first two columns of Table 3 report the results. The method does moderately well in meeting the first criteria, detecting differences in residual variation between groups. When the standard deviation of Group 1’s residual variation is 1.8 versus 1.0 for Group 0, \(\hat{\delta} \) is significantly different from zero in 18 out of 20 cases (17 out of 20 using a likelihood ratio test). That is, the method accurately indicated a difference in residual variation in the overwhelming majority of cases. When the difference is more moderate, a standard deviation of 1.4 versus 1.0, both the Wald and log-likelihood ratio tests indicate a significant difference in residual variation in about half of the simulated data sets. Importantly, the test yields few false positives. When the residual variation was equal across groups, the method indicated so in 17 out of 20 cases (Wald test). That is, it falsely indicated that residual variation differed across groups in only 3 of the 20 cases.

The third column shows the results of testing the null hypothesis that the true coefficients are all equal across groups versus the alternative that at least one differs. Allison’s test correctly indicated that there is no actual difference in the coefficients in 19 out of 20 cases at each level of Group 1’s residual variation. That is, it incorrectly rejected the null hypothesis of no difference in only 1 of 20 cases. To emphasize the improvement over conventional tests, compare the results to Table 2. There, the conventional test incorrectly indicated that \(x_2 \)’s effect differed across groups in 6 out of 20 cases when Group 1’s residual variation had a standard deviation of 1.2, and in 14 out of 20 cases when the standard deviation was 1.4. Clearly, the test meets the second criteria for improving on current practice.

I next test the method’s ability to detect true differences in the value of a coefficient across groups, the third criteria. I again generated datasets of 500 Group 0 and 500 Group 1 observations, this time using Equation (14). It fixes the standard deviation of Group 1’s residual variation slightly higher than that of Group 0 and varies \(\gamma \), the additional impact of \(x_2 \) for Group 1, from 0 to 1 in 0.2 increments. Since the coefficient for \(x_2 \) is 2 for Group 0, this range represents an equal to fifty-percent greater effect for Group 1. For each value of \(\gamma \), I generated 20 datasets.
\[y_* = x_1 + (2 + \gamma G_i)x_2 + \epsilon_i \]

\[y_i = \begin{cases}
1 \text{ if } y_* > 0 \\
0 \text{ if } y_* \leq 0
\end{cases} \]

\[G_i = \begin{cases}
0 \text{ for group 0} \\
1 \text{ for group 1}
\end{cases} \]

The first two columns of Table 4 report on the method’s ability to detect differences in the residual variation across groups. When \(x_2 \) has the same effect in both groups, the method accurately reports that the residual variation differs in just over half the sample datasets. Unfortunately, the method becomes less able to detect the difference in residual variation across groups as \(x_2 \)’s additional impact on Group 1 increases. When \(x_2 \) has a 20% greater impact on Group 1 (\(\gamma = .4 \)), the method identifies the difference in residual variation in only 6 of 20 cases. Since we know from Table 2 that this degree of difference in residual variation can lead to false conclusions about differences in coefficients, this result raises concerns.

The third column of the table reports on the method’s ability to detect real difference in coefficients across groups. When \(x_2 \) has a 10% greater impact on Group 1 (\(\gamma = .2 \)), the method reports the difference in only 4 of 20 cases. However, when the difference is 20%, (\(\gamma = .4 \)), it detects the difference in 15 of 20 cases. It continues to improve as the difference increases, as one would expect.

It is also theoretically possible to test the null hypothesis that all of the underlying coefficients are the same against the alternative hypothesis that a specific coefficient, e.g., \(x_2 \), differs across groups. However, the test assumes that all of the coefficients not being tested are the same across groups. We cannot test this assumption without engaging in circular logic. To test whether the coefficients for \(x_2 \) differ, we must assume that the coefficients for \(x_1 \) are the same. However, we cannot test that assumption without assuming that the coefficients for \(x_2 \) are

\[x_1, x_2 \sim N(\mu=0, \sigma=4) \]

\[\epsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1) \]

\[\epsilon_{\text{group 1}} \sim N(\mu=0, \sigma=1.4) \]

\(\gamma = 0, 0.2, 0.4, 0.6, 0.8, 1.0 \)
the same. Given this limitation, the scope for applying this test is limited and I will not test its power. I do, however, demonstrate its use in the practical example below.

In general, simulation results are somewhat reassuring about our ability to detect and resolve the confounding effect of different residual variation across groups. However, even when the difference in the standard deviation of the residual variation was forty percent, Allison’s method failed to indicate this difference in almost half of the cases. Still, by identifying the difference in even half the cases, it greatly improves on naïve comparison of coefficients and should be routinely applied. However, it is not a panacea. Therefore, I will present two other approaches.

Differences in the relative effect of covariates

Given the limitations of the method above, particularly its inability to show whether a specific coefficient differs across groups, we may want to consider an approach that renders any difference in residual variation irrelevant. Suppose we could frame our interest not as whether the absolute effect of x_2 differed across groups, but rather as whether the impact of x_2 relative to x_1 differs across groups. To answer this question, we compare the ratio β_2 / β_1 (Train 1998:237). If this ratio were 2 for Group 0 and 3 for Group 1 it would mean that a “unit” of x_2 has twice the effect of a unit of x_1 for Group 0 and thrice the effect of a unit of x_1 for Group 1. Relative to x_1, x_2 has a stronger effect on Group 1.

When this sort of comparison is sensible and theoretically interesting, the nature of ratios provides us a powerful benefit. Since β is the underlying coefficient, α, scaled by the standard deviation of the residual variation, σ, we find that

$$\frac{\beta_2}{\beta_1} = \frac{\alpha_2 / \sigma}{\alpha_1 / \sigma} = \frac{\alpha_2}{\alpha_1} = \frac{\sigma}{\sigma} = \frac{\sigma_2}{\sigma_1}. \quad (15)$$

By taking a ratio, we have removed the impact of residual variation and are left with a ratio of the underlying effects of x_2 and x_1. We can compare this ratio across groups, since it is no longer confounded by differences in residual variation.
The statistical significance of the difference in the ratios across groups can be computed with a Wald chi-squared test (Greene 2000). Unfortunately, even large differences in ratios may not be statistically significant, especially if one or more terms are estimated with poor precision. To demonstrate this, I generated data according to Equation 14 above and then compared the ratio of β_2 to β_1 resulting from estimating

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

separately for each group.

Table 5 shows the results given sample sizes of 100 and 1000. When the true coefficient of x_2 is 2.4 for Group 1 versus 2.0 for Group 0, the difference in the ratio β_2/β_1 across groups is statistically significant in 15 of 20 simulated datasets of 1000 observations. With only 100 observations, however, we detect the difference in only 8 of 20 datasets. The difference becomes more extreme when the true value of x_2 rises to 2.8 for Group 1. With 1000 observations, we detect the difference in β_2/β_1 across groups in every case. With only 100 observations, however, we detect the difference in only twelve cases. Clearly, we need more precise estimates and thus more observations to apply this technique than we need to compare individual coefficients.

Abandon direct comparisons

Given these challenges, a researcher may wish to simply abandon direct comparisons of coefficients across groups. Even in this case, we can often make some analytical progress.

If we model the two groups separately, the coefficients and standard errors are consistent within each group. The pattern of coefficient significance between the two models may provide some information. If β_1 were positive and highly significant for Group 0 and far from significant for Group 1, it suggests that x_1 has a stronger effect on Group 0 than on Group 1. While not a formal test, the fact that the effect of x_1 is indistinguishable from 0 for Group 1 strongly suggests that x_1 has a larger effect for Group 0. In essence, “not zero” is a larger effect than “zero”. Obviously, this suggestion is stronger if the samples are of roughly the same size and the model appears well specified. The suggestion is also stronger if the p-values do not straddle a particular
significance level. For example, it would be foolish to draw strong implications from one p-value being .09 and the other .11, even though the latter does fall outside of the conventional 10% level of significance.

Of course, if a coefficient is (in)significant for both groups, this approach does not provide insight into relative effects. However, the researcher can at least report that, for example, x_1 has a significantly positive impact for both groups.

A PRACTICAL EXAMPLE

As an illustration of how one applies these methods in practice, consider the following example, which studies notebook computer manufacturers’ decisions to make innovative flat panel displays internally or buy them from an external supplier. At issue is whether Japanese and U.S. manufacturers are equally likely to internalize production given technological uncertainty and differences in technological capabilities. I use data on 97 procurement decisions by U.S. and Japanese computer makers from 1992 to 1998. For simplicity of exposition, the regressions I present in this paper use a small subset of the explanatory variables and cases analyzed in Hoetker (2001). The results differ from those of the original paper and no substantive conclusions should be drawn from any of the regressions reported herein.

Theory leads to the following expectations. Transaction costs economics suggests that uncertainty makes companies more likely to make products internally (Williamson 1985). Prior work suggests that the strong relationships between Japanese manufacturers and their suppliers make them better than U.S. firms at managing uncertainty without resorting to internalization (Dyer 1996). I expect both U.S. and Japanese firms to be more likely to make displays internally the more technically capable they are at doing so relative to outside suppliers.

Table 6 presents the results of modeling the make-or-buy decision with a logit model. Columns A and B report the results of estimating an ordinary logit equation for U.S. and Japanese firms respectively. I measure uncertainty with an indicator variable set to one when the displays being procured required totally new manufacturing techniques rather than improvements in existing techniques. Consistent with expectations, the estimated coefficient for uncertainty is
positive for both U.S. and Japanese manufacturers, indicating that internalization is more likely
given higher uncertainty. However, it is only statistically significant for U.S. firms.

More striking is the difference in the estimated coefficients for relative technical strength,
which I measured as the ratio between the manufacturer’s display-related patents and the
maximum number of display-related patents held by any external supplier. We would expect a
positive effect, as firms are more likely to internalize production when they are technologically
stronger than available external suppliers. I find this result for U.S. firms, but not for Japanese
firms. Moreover, the estimated coefficient is much higher for U.S. firms (3.04) than Japanese
firms (.025). In the linear case, I would test the significance of the difference with a Wald chi-
squared test (Equation 7). Doing so in this case suggests that the difference is statistically
significant (chi-squared=7.11, p-value=0.007).

If true, this has profound implications. It means Japanese firms will tolerate a much larger
gap between their external supplier’s capabilities and their own before they internalize
production. While I might explain this result as evidence of Japanese firms’ strong commitment
to the outsourcing system, it suggests that Japanese firms use a very different calculus than do
U.S. firms when balancing the advantages of internal technological strength against the
bureaucratic costs of internalization. It also raises questions about why Japanese firms invest
almost as heavily in research and development as do U.S. firms (Ministry of Economy, Trade
and Industry (Japan) 2001), if they strongly prefer to outsource despite being technically strong
relative to external suppliers.

Before racing to declare my finding a breakthrough, I need to consider the possibility that
differences in residual variation have confounded my comparisons. I apply Allison’s method to
explore this possibility.

I first test if residual variation differs significantly between groups. Estimating equation (12)
yields an estimate of -0.87 for \(\delta \) (Column D). This indicates that the standard deviation of the
residual variation is 87 percent lower for Japanese firms than U.S. firms. I compute the
significance of the \(\delta \) coefficient with a Wald chi-squared test (the squared ratio of the estimate to
its standard error), which yields \((.87/.17)^2 = 26.2\) with one degree of freedom \((p<.01)\).

Alternatively, I can use a standard log-likelihood ratio test to compare the model to an ordinary logit model estimated on all firms, which constrains \(\sigma\) to be the same for both groups (Column C). Calculating twice the positive difference between the log-likelihoods yields \(2*(33.32-28.43)=9.79\). This has 2 degrees of freedom, since there are two more estimated coefficients in the unconstrained equation than the constrained equation. Again, the result is significant \((p=.07)\).

There is clear evidence that the residual variation differs across Japanese and U.S. companies. Accordingly, I next test the null hypothesis that all of the underlying coefficients are the same for U.S. and Japanese firms versus the alternative hypotheses that at least one coefficient varies. I do this by comparing the log-likelihood of the most recent model (Column D), which constrains the coefficients to be equal across groups while allowing the residual variation to differ, to a model that interacts each variable with the Japanese-firm dummy. Conveniently, the log-likelihood of the latter is equal to the sum of the log-likelihoods of the separate group regressions, Columns A and B. The relevant calculation, \(2*(28.43-(13.37+13.96))\), yields a value of 2.2. This has one degree of freedom, since the constrained model has five parameters and the unconstrained models have six total parameters. This implies a p-value of .14. I am unable to reject the null hypothesis that all of the underlying coefficients are the same across groups.

Therefore, I must conclude that the differences between the Japanese and U.S. coefficients were merely the result of differences in the residual variation between the two groups of firms. My dramatic original finding was a consequence of coefficients being confounded with residual variation. Had I not tested for this possibility, I would have been misled about the behavior of Japanese firms.

Purely for purposes of illustration, I next test whether the effect of relative technical strength differs for Japanese companies. As noted above, this requires assuming that the effect of uncertainty is the same across groups, an assumption I would not make in practice. Furthermore, I have already found no evidence that any coefficient differs across groups. I proceed by expanding the model in Column D to include an interaction between technical strength and
Japanese firms, which allows the impact of technical strength to vary across groups, while still allowing for differences in their residual variation. Column E presents the results.

A Wald test indicates that the coefficient for the interaction term is significant (chi-squared of \((-3.01/1.26)^2=5.7\), \(p\)-value of .02), suggesting the effect of technical strength is significantly less for Japanese firms, controlling for differences in residual variation. However, a likelihood ratio test yields a chi-squared of \(2*(28.43-27.35)=2.16\), with one degree of freedom (\(p=.14\)), indicating that the interaction term is not significant. The conflicting tests likely reflect the poor overall fit of the model. If the interaction term were significant, a highly dubious conclusion in this case, I would interpret the model like any model with an interaction term. The coefficient for relative technical strength is 3.04 for U.S. firms and 3.04-3.01=0.03 for Japanese firms.

Having exhausted the insights of Allison’s method, I consider alternative means of interpreting my results. First, I ask if the effect of technical strength relative to the effect of uncertainty differs for U.S. and Japanese firms. This is equivalent to testing whether

\[
\frac{\beta_{\text{US techn str}}}{\beta_{\text{US unc}}} = \frac{\beta_{\text{Jpn techn str}}}{\beta_{\text{Jpn unc}}}. \tag{17}
\]

As noted above, taking the ratio removes the impact of residual variation, allowing me to compare across U.S. and Japanese firms. While the ratio appears much lower for Japanese firms, 0.0014 versus 1.31 for U.S. firms, a Wald test yields a chi-square of 1.89 with one degree of freedom (\(p=.1687\)). I cannot reject the hypothesis that the two ratios are equal and thus have no evidence to suggest that the relative impact of technical strength and uncertainty differs between U.S. and Japanese firms.\(^{\text{viii}}\) As demonstrated in Table 5, testing for the differences in the ratios of coefficients places high demands on the precision of the coefficient estimates, so the failure to find a significant difference is not surprising in this small data set.

If the U.S. and Japanese samples were of roughly the same size and the model appeared well specified, I could compare the significance of coefficients across groups. I do so for purposes of illustration only, since there are many fewer Japanese firms. Looking at Columns A and B of Table 6, the coefficient for relative technical strength is highly significant (\(p<.01\)) for U.S. firms.
In contrast, for Japanese firms, it is far from significant ($p = .96$). While not a formal test, a “more than zero” effect for U.S. firms is likely larger than an “indistinguishable from zero” effect for Japanese firms, suggesting that technical strength has a larger effect for U.S. firms.

Uncertainty is also significant for U.S. firms ($p = .07$), but not for Japanese firms ($p = .13$). Even in the ideal case, however, I would not place much stock in this difference, given how close the p-value for Japanese firms was to conventional significance levels.

In summary, this analysis initially appeared to offer a dramatic new insight into Japanese technology strategy. It appeared that Japanese firms tolerate a much larger gap between their external supplier’s capabilities and their own before they internalize production. However, more appropriate analysis suggests that Japanese and U.S. firms probably do not differ in the impact of technological strength on the probability of internalization. The apparent difference is actually nothing more than the confounding of coefficients and differences in residual variation between Japanese and U.S. firms.

IMPLICATIONS FOR RESEARCH

The implications for research using the logit or probit model are profound. Conclusions drawn from comparing coefficients across groups while ignoring the possibility of coefficients being confounded with residual variation are meaningless. The simulations in this paper have shown that in the presence of even fairly small differences in residual variation, naïve comparisons of coefficients can indicate differences where none exist, hide differences that do exist, and even show differences in the opposite direction of what actually exists. As the U.S.–Japan example shows, what appear to be dramatic new insights are likely to have no real basis. This has implications for both gathering data and carrying out statistical testing.

Gathering as complete a set of covariates as possible is more important when using logit or probit than when using linear regression. In the linear case, omitted variables are only significant if they are correlated with included variables. However, in the logit or probit case, any variable that helps explain the outcome variable is useful and should be gathered. The more variation we
control for, the less residual variation there is and the less it can vary across groups. We also need a sizable sample to apply the ratio of coefficients technique.

Econometric theory and simulation results suggest that tests interacting coefficients with a dummy variable for group membership in a single equation are particularly misleading. Forcing observations from both groups to have the same residual variation yields coefficients that tell us nothing about how a covariate’s impact varies across groups. Moreover, it yields no information about the effect of the covariate on each group.

Estimating separate equations for each group at least offers the advantage of accurate estimation within each group. However, before attempting to compare coefficients, researchers must test for differences in residual variation. This will require a change in current practice, but the test is simple to run in any statistical package.

If a difference in residual variation is found, the researcher has several options. Allison’s test for determining if at least one coefficient differs between groups is powerful and makes few assumptions. It will lead to more conservative results and may reveal that apparent differences are not actually significant. If it reveals differences, the researcher can then test that a specific coefficient differs. However, this test has a stringent assumption: the other coefficients must be equal across the groups. Since it is not possible to test this, the researcher must judge the probability of this assumption holding on theoretical grounds.

If it is theoretically relevant to compare the relative effects of two covariates across groups, the researcher can compare the ratio of coefficients across groups. This has the advantage of making no assumptions about the residual variation across groups. Offsetting this advantage are two facts. First, an answer in terms of relative effects may not satisfy the theoretical question at hand. Second, even large differences between ratios may not be statistically significant, particularly if one or more terms are poorly estimated. This makes it more difficult, perhaps artificially so, to identify cross-group differences.

Alternatively, the researcher can abandon attempts to compare the effects of covariates directly. By modeling each group separately, the researcher can at least draw inferences about
the significance of coefficients within each group. Careful examination of the pattern of coefficient significance across groups may suggest that a covariate has an impact in one group and no impact in another.

In most cases, a combination of approaches will provide the most insight. For example, suppose x_2 is highly significant for Group 0, but far from significant for Group 1. Furthermore, Allison’s test indicates that at least one covariate differs across groups. Lastly, the ratio $\frac{\beta_2}{\beta_1}$ if significantly more for Group 0 than for Group 1. By several measures, we can argue that x_2 plays a more important role for Group 0 than Group 1.

Comparing coefficients across groups in logit or probit models requires that the researcher apply careful judgment using his or her understanding of both statistical issues and the underlying phenomenon. Ultimately, however, researchers may simply not be able to conduct some of the comparisons they are accustomed to doing in the linear setting. While this is frustrating, no results are surely superior to spurious results.

ACKNOWLEDGEMENTS

I gratefully acknowledge the helpful comments of Paul Allison, Tim Liao, and Steve Michael. All errors remain my own.
Table 1: Apparent coefficient differences in simulated data

<table>
<thead>
<tr>
<th></th>
<th>Group 0</th>
<th>Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.958***</td>
<td>0.482***</td>
</tr>
<tr>
<td>(0.086)</td>
<td>(0.041)</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>1.835***</td>
<td>0.922***</td>
</tr>
<tr>
<td>(0.153)</td>
<td>(0.062)</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.146</td>
<td>0.027</td>
</tr>
<tr>
<td>(0.147)</td>
<td>(0.106)</td>
<td></td>
</tr>
</tbody>
</table>

Log likelihood -153.32 -287.68
N 1,000 1,000

Standard errors in parentheses
*** p<0.01; ** p<0.05; * p<0.1; two-tailed tests

Data generated according to the equation:

\[y^*_i = x_{1i} + 2x_{2i} + \varepsilon_i \]

\[y_i = \begin{cases}
1 & \text{if } y^*_i > 0 \\
0 & \text{if } y^*_i \leq 0
\end{cases} \]

x1, x2 ~ N(μ=0, σ=4)

\(\varepsilon_{\text{group } 0} \sim N(\mu=0, \sigma=2) \)

\(\varepsilon_{\text{group } 1} \sim N(\mu=0, \sigma=4) \)
Table 2: Differences in residual variation drive apparent differences in estimated coefficients

<table>
<thead>
<tr>
<th>Standard deviation of residual variation for Group 1</th>
<th>Mean value of estimated β_2 for Group 1</th>
<th>Number of times β_2 was falsely found to differ across groups (20 simulations, $p=.05$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.77</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>3.08</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>2.66</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>2.41</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>2.01</td>
<td>20</td>
</tr>
<tr>
<td>2.0</td>
<td>1.85</td>
<td>20</td>
</tr>
</tbody>
</table>

Data generated according to the equation:

$$y^* = x_{i1} + 2x_{i2} + \epsilon_i$$

$$y_i = \begin{cases} 1 \text{ if } y^*_i > 0 \\ 0 \text{ if } y^*_i \leq 0 \end{cases}$$

$x_{i1}, x_{i2} \sim N(\mu=0, \sigma=4)$

$\epsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1)$

$\epsilon_{\text{group 1}} \sim N(\mu=0, \sigma=1, 1.2, 1.4, 1.6, 1.8, 2.0)$
Table 3: Allison's method accurately detects differences in residual variation and *false* differences in coefficients

<table>
<thead>
<tr>
<th>Standard deviation of Group 1’s residual variation</th>
<th>Does the standard deviation of the residual variation differ across groups?</th>
<th>Do any of the coefficients differ across groups?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of positive tests out of 20 datasets (p=0.05)</td>
<td>Number of positive tests out of 20 datasets (p=0.05)</td>
</tr>
<tr>
<td></td>
<td>Wald chi-square test</td>
<td>Log-likelihood test</td>
</tr>
<tr>
<td>1.0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

Data reflect estimating

\[
\log \left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2
\]

separately for Group 0 and Group 1 on data generated by

\[
y^* = x_{ii} + 2x_{i2} + \epsilon_i
\]

\[
y_i = \begin{cases}
1 & \text{if } y^*_i > 0 \\
0 & \text{if } y^*_i \leq 0
\end{cases}
\]

\[
x_1, x_2 \sim N(\mu=0, \sigma=4)
\]

\[
\epsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1)
\]

\[
\epsilon_{\text{group 1}} \sim N(\mu=0, \sigma=1.4)
\]
Table 4: Allison's method also accurately detects true differences in coefficients

<table>
<thead>
<tr>
<th>Additional impact of x_2 on Group 1</th>
<th>Does the standard deviation of the residual variation differ across groups?</th>
<th>Do any of the coefficients differ across groups?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of positive tests out of 20 datasets ($p=.05$)</td>
<td>Number of positive tests out of 20 datasets ($p=.05$)</td>
</tr>
<tr>
<td></td>
<td>Wald chi-square test</td>
<td>Log-likelihood test</td>
</tr>
<tr>
<td>0.0</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>0.4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1.0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Data reflect estimating

$$
\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (G_i x_2)
$$

separately for Group 0 and Group 1 on data generated by

$$
y_i^* = x_{i1} + (2 + \gamma G_i) x_{i2} + \varepsilon_i
$$

$$
y_i = \begin{cases}
1 & \text{if } y_i^* > 0 \\
0 & \text{if } y_i^* \leq 0
\end{cases}
$$

$$
G_i = \begin{cases}
0 & \text{for group 0} \\
1 & \text{for group 1}
\end{cases}
$$

$x_1, x_2 \sim N(\mu=0, \sigma=4)$

$\varepsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1)$

$\varepsilon_{\text{group 1}} \sim N(\mu=0, \sigma=1.4)$

γ ranges from 0 to 1
Table 5: Comparing the ratios of coefficients requires precise estimates of each coefficient

<table>
<thead>
<tr>
<th>Additional impact of x_2 on Group 1</th>
<th>Does the ratio β_2 / β_1 differ across groups?</th>
<th>Does the ratio β_2 / β_1 differ across groups?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of positive tests out of 20 datasets (p=.05)</td>
<td>Number of positive tests out of 20 datasets (p=.05)</td>
</tr>
<tr>
<td></td>
<td>N=100</td>
<td>N=1,000</td>
</tr>
<tr>
<td>0.0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>0.4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>0.8</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>1.0</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

Results reflect estimating

$$\log \left(\frac{p_i}{1-p_i} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

separately for Group 0 and Group 1 on data generated by

$$y^* = x_{1i} + (2 + \gamma G_i) x_{2i} + \epsilon_i$$

$$y_i = \begin{cases}
1 & \text{if } y^*_i > 0 \\
0 & \text{if } y^*_i \leq 0
\end{cases}$$

$$G_i = \begin{cases}
0 & \text{for group 0} \\
1 & \text{for group 1}
\end{cases}$$

$x_1, x_2 \sim N(\mu=0, \sigma=4)$,

$\epsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1)$

$\epsilon_{\text{group 1}} \sim N(\mu=0, \sigma=1.4)$

γ ranges from 0 to 1
Table 6: Probability of internalization for U.S. and Japanese manufacturers

<table>
<thead>
<tr>
<th>Relative technical strength</th>
<th>Ordinary logit</th>
<th>Allison’s method</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Firms</td>
<td>Japanese firms</td>
<td>All firms</td>
</tr>
<tr>
<td>3.041***</td>
<td>0.025</td>
<td>1.56***</td>
</tr>
<tr>
<td>(1.047)</td>
<td>(0.555)</td>
<td>.354</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>2.306*</td>
<td>1.788</td>
</tr>
<tr>
<td>(1.277)</td>
<td>(1.193)</td>
<td>.702</td>
</tr>
<tr>
<td>Intercept</td>
<td>-7.04**</td>
<td>-0.057</td>
</tr>
<tr>
<td>(2.15)</td>
<td>(1.369)</td>
<td>.760</td>
</tr>
<tr>
<td>Japanese firm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ (Japanese firm)</td>
<td></td>
<td>-0.87***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.17)</td>
</tr>
<tr>
<td>J. firm * rel. tech. strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>74</td>
<td>23</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. *** p<0.01; ** p<0.05; * p<0.1; two-tailed tests
Figure 1: Estimates using an interaction term are highly misleading

Results reflect estimating

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (G_i x_2)$$

on data generated by

$$y^* = x_{il} + 2x_{2l} + 0.5(G_i x_{2l}) + \epsilon_i$$

$$y_i = \begin{cases} 1 \text{ if } y_i^* > 0 \\ 0 \text{ if } y_i^* \leq 0 \end{cases}$$

$$G_i = \begin{cases} 0 \text{ for group 0} \\ 1 \text{ for group 1} \end{cases}$$

$x_1, x_2 \sim N(\mu=0, \sigma=4)$

$\epsilon_{\text{group 0}} \sim N(\mu=0, \sigma=1)$

$\epsilon_{\text{group 1}} \sim N(\mu=0, \sigma=3)$

ENDNOTES

i Since the same development applies to both the logit and probit models, I subsequently limit my discussion to the logit for simplicity.

ii All data generation and estimation was performed using Stata version 8/SE.

iii If group membership is endogenously determined, e.g., firms’ choice of entry mode into a foreign market, selection bias must be addressed. See Shaver (1998) for details.

iv In Allison’s original code, replace “$ml_y1” with “$ML_y1”, noting the capitalization. Code in Stata (version 8) to automate all of the calculations discussed in this section is also available. Type “net from http://www.cba.uiuc.edu/ghoetker” within Stata to being installing it.

v Allison commented (personal communication, December 17, 2002) that the simulation results “call into question my recommendation” to proceed with standard means of comparing coefficients if the test fails to reject the hypothesis that the groups have equal residual variation. Further research on this point is needed. A conservative course of action would be to test the null hypothesis that none of the true coefficients vary across groups, even if the method does not indicate a difference in the residual variation of the groups.

vi In Stata, a combination of the *suest* and *testnl* commands simplifies this process, but the necessary computations are possible in almost any statistical package (For detailed examples, see Weesie 1999). *suest* was written by Jeroen Weesie of Utrecht University and is not a built-in command in Stata version 7. From an updated version of Stata 7, type “findit suest” to begin the installation process. *suest* has been integrated into the new Stata version 8.

vii See footnote 4 above for information on Stata code to automate these calculations.

viii I actually cross-multiplied the ratios and tested $\beta_{tech \str}^{US} (\beta_{unc}^{Jpn}) = \beta_{unc}^{US} (\beta_{tech \str}^{Jpn})$. The non-linear Wald test is not invariant to representation. The multiplicative representation, being “more linear” in the coefficients, is generally more accurate.